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C, 45.61; H, 6.02; Cl, 6.41; mol wt, 1106. Found: C, 45.56; H, 6.13; Cl, 6.52;

mol wt, 1121 (cryoscopic in benzene). For 3b, the M NMR (CgDg) exhibits

singlets at 6 8.96 (30 H, line width = 6 Hz.), — 154 (3 H, line width ~ 7 Hz).

Anal. Caled for Cp4Mg3UCH: C, 45.12; H, 5.95; CI, 6.34; mol wt, 559. Found:

C, 44.98; H, 5.89; ClI, 6.39; mol wt, 568 (cryoscopic in benzene). (e) Anal.

Calcd for C4oMgaTho (4a): C, 47.61; H, 6.41; mol wt, 1009, Found: C, 48.63;

H, 6.63; mol wt, 1038 (cryoscopic in benzene). (f) For 4b, broadened bands

centered at 1345 and 1180 cm™" are observed in the IR. The "M NMR

spectrum (CgDs) shows a singlet at 6 —2.15 (line width = 4 Hz); the hydride
signal has not, as yet, been located.
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Activation of Water Molecule. 1. Intermediates
Bearing on the Water Gas Shift Reaction Catalyzed
by Platinum(0) Complexes

Sir:

The heterogeneously catalyzed water gas shift reaction now
employed in industry requires high temperature.! Homoge-
neous catalysts active at lower temperature are attracting
considerable interest? because of the favorable thermodynamic
equilibrium. Recently three groups have reported homoge-
neous catalytic systems consisting of metal carbonyls, i.e.,
Ru3(CO) ;-base3* and [Rh(CO),Cl],-HCI-Nal-glacial
acetic acid.’ The logical basis for employing metal carbonyls
as catalysts might be the CO activation through coordination
which facilitates nucleophilic attack by water.3-3

We wish to report here briefly a new approach based on a
different strategy to activate the water molecule using low-
valent transition metal complexes capable of forming hydrido
hydroxo species, trans-H-M-OH. In view of HSAB principles
and the strong trans influence of hydride,® an enhanced nu-
cleophilic reactivity” toward CO is expected for the hydroxo
ligand in the H-M-OH species. Possible candidates for such
low-valent transition metal compounds are PtL; (L = tertiary
phosphines).

The results of the water gas shift reactions catalyzed by some
PtL; complexes are summarized in Table I. Typically the
catalytic solution prepared from PtL; (0.1 mmol) and H,O (2
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Table 1. The Water Gas Shift Reaction?
Gaseous Products®
Temp. Turn-
Catalyst Solvent °C H, CO, overe

Pt[P(i-Pr)s]s Acetone 100 9.4 8.2 8.8
Acetone 125 16.0 15.8 159

Acetone 153 37.5 31.6 345

THF 100 7.0 6.6 68
Pyridine 100 0.7 1.0 9
Pt(PEt3)s Acetone 100 1.1 1.1 11
Pt(PPh;)s THF 100 0 0 0

@ The reaction conditions shown in the text. & Millimoles.
¢ Moles/mole of catalyst, 18 h.

mL) in an aprotic solvent (5 mL) was placed into a stainless
steel bomb (100 mL) under a N; atmosphere and subsequently
was charged with CO (20 atm). After heating at a fixed tem-
perature for 18 h, the gaseous products in the vapor phase as
well as dissolved in the liquid phase were analyzed by gas
chromatography? and quantitative titration.

A remarkable solvent effect is observed for the catalysis.
Coordinating pyridine drastically reduces the catalytic activity
of Pt[P(i-Pr);]3® (1). The colorless homogeneous reaction
mixture in pyridine after the shift reaction (100 °C, 18 h)
contains trans-{PtH(pyridine)[P(i-Pr);],}OH? (2) which can
be stabilized by anion metathesis with BF;~ (68% yield). By
contrast, from the catalytic reaction in acetone or THF carried
out under the same conditions was obtained trans-{PtH(CO)-
[P(i-Pr);3],JOH (3) as the BPhy~ salt!® in 90% yield.

The precursors 2 and 3 are readily traced from studies on
the solution chemistry of PtL,. Extensive dissociation of 1 gives
PtL, as by far the predominant species in solution.!! Conse-
quently the oxidative addition of water occurs with PtL; to give
2 via solvation of an incipient species PtH(OH)L,. The addi-
tion was found to be reversible as 1 was recovered from a
mixture of 1 and H,O in pyridine on concentration to dryness.
The instability of 2 prevents its isolation and the rapid proton
exchange between the hydrido ligand of 2 and water apparently
obscures the hydrido "H NMR signal. In addition to the iso-
lation of trans-{PtH(pyridine)[P(i-Pr);] 2JBF,, the existence
of 2 is further evidenced by conductometric and pH mea-
surements. Thus the system 1/H,0 in pyridine ({H>0] > 15
M) shows a conductance (A 23.9 Q= cm? at 20 °C), and the
dissociation of OH~ from 2 is manifested by the apparent pH
(14.1) of the system 1/H,0 ([1] = 9.8 X 1073 M, [H,0] =
22.2 M in pyridine, 20 °C).!2

A reaction mixture of the water gas shift reaction (100 °C,
18 h) catalyzed by Pt(PEt;); in acetone contains a water
adduct [PtH(PEt3);]OH,!? which was isolated as the BPhy
salt!* in 72% yield. In this case, the formation of [PtH(CO)-
(PEt3;),]OH was not observed. The formation of [PtH-
(PEt;)3]* and {PtH(pyridine) [P(/-Pr);],}™ is ascribed to their
inertness toward CO (1 atm, 25 °C), which accounts for the
low catalytic activity of Pt(PEt;); in acetone or 1 in pyri-
dine.

The catalytic activity of PtL; decreases in the order P(i-Pr);
> PEt; >» PPh;. The complete lack of catalytic activity in
Pt(PPh3); is apparently due to the incapability of water adduct
formation. The importance of water molecule activation is
obvious.

Nucleophilic attack of OH™ at the coordinated CO will give
PtH(CO,H)L,. Evidence for the metal carboxylic acid is the
formation of the potassium salt trans-PtH(CO,K)[P(i-Pr)3]>,
observed by '"H NMR and IR spectra!?® of the solution of
trans-{PtH(CO)[P(i-Pr);]2}BPh, treated with an excess of
KOH in ageuous THF at room temperature. Further indirect
support for the formation of the metal carboxylic acid is the
successful isolation of trans-PtH(CO,CH3)[P(i-Pr);],'® (65%
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Scheme I. Possible Mechanism for the Water Gas Shift Reaction
Catalyzed by Pt[P(-Pr);],
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yield) by the reaction of trans-{PtH(CO)[P(i-Pr);],}BPhy with
CH3ONa at room temperature. Facile formation of Pt(R)-
(CO;H)(diphos) from Pt(R)(OH)(diphos) (R = CHj, ¢-
CeHo) is also known.!”

The CO; evolution should occur from thermal decompo-
sition!® of the unstable PtH(CO,H)L,.19 A dihydride species
trans-PtH,[P(i-Pr)3],2° (4) will then be formed. The reaction
of 4 with CO leading to Pt;(CO);L4 is possible. However, this
route in the catalysis is excluded since the isolated Ptj-
(CO)3[P(i-Pr)3]42! was found almost inactive catalytically.
Thus, 41s thought to undergo hydrogen elimination (Scheme
I). Involvement of 4 in the catalytic cycle was confirmed by the
dihydride-catalyzed water gas shift reaction?? from which was
isolated 3 as its BPhy salt.

Alternatively, reductive elimination of HCO,H from
PtH(CO,H)L; with concomitant formation of Pt{P(i-Pr);],
is possible. A rapid catalytic decomposition of HCO»H into
CO; and H; occurs with 1 at room temperature,2* and the
platinum complex was recovered as 4 quantitatively. The de-
composition of HCO,H probably proceeds through oxidative
addition of HCO,H to give trans-PtH(O,CH)[P(i-Pr);],,
which is followed by 8-hydrogen elimination affording 4 and
CO.. Consistent with this, the decomposition of HCO,H was
also catalyzed by trans-PtH(O,CH)[P(i-Pr)3],2° prepared
separately by COj insertion into the Pt-H bond of 4. The
possible pathways are summarized in Scheme 1.
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Complete Kinetic Analysis of Thermal
Stereomutations of (+)-(1S,2S,3S)-r-1-Cyano-
t-2-phenyl-1, ¢-3-dideuteriocyclopropane

Sir:

Both one-center (k) and two-center (kj;) thermal epimer-
izations of cyclopropanes are known in special cases,!~? but
there is no reliable method for anticipating the relative im-
portance of these reaction modes in other cyclopropyl systems.
Only experiments capable of discriminating among all one-
center and all two-center epimerization possibilities can provide
the factual grounds for developing theory appropriate to this
task.

To synthesize the substrate selected for our kinetic studies,
(+)-(15,25,35)-r-1-cyano-z-2-phenyl-1,c-3-dideuteriocy-
clopropane ((+)-1-¢), trans-B-deuteriostyrene,* and ethyl
diazoacetate-d > were reacted in the presence of CuSOy; the
resultant mixture of esters was epimerized with potassium
tert-butoxide in deuterated tert-butyl alcohol® to afford r-1-
ethoxycarbonyl-z-2-phenyl-1,c-3-dideuteriocyclopropane.
Hydrolysis with dilute acid and resolution through the quinine
salt” gave (+)-(1S5,25,3S)-2-phenyl-1,3-dideuteriocyclopro-
panecarboxylic acid. Conversion to the corresponding nitrile,
{(+)-1-c, was accomplished by way of the acid chloride and the
amide.® Epimerization of (+)-1-c with potassium tert-butoxide
in deuterated tert-butyl alcohol gave a 70:30 mixture of
(+)-1-¢c and (—)-2-¢, without racemization of (+)-1. The
rotations in CHCI; of optically pure nitriles were [«]p +369°
for (+)-1and [a]p —22.8° for (—)-2.

Thermal equilibration® at 242.1 °C of 1 and its cis isomer
2, starting with either isomer, was followed by VPC; the con-
centration vs. time data provided values for the rate constant
(ki + ko + ki3 + ky) = 1.09 X 1073571 and the equilibrium
constant X = 0.40.

Ph o Ph eN
b} k|+k2+k|3+ k23 D
<> - —_— <> _—
—
CN ]
| 2

When the thermal isomerizations of 1-¢ and of 2-t were
examined by VPC analysis, followed by preparative VPC
separation of c¢is and trans isomers and NMR analysis to dis-
tinguish 1-¢ from 1-¢, and 2-¢ from 2-¢, the concentration vs.
time data-—44 experimental points—were fit to theoretical
curves based on exact solutions to the kinetic expressions ap-
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